
Game
Programming
Patterns

Robert Nystrom

The full text of this book lives online at
gameprogrammingpatterns.com.

Copyright © 2014 by Robert Nystrom.

All rights reserved.

This book was lovingly typeset by the author in Sina Nova, Source Sans

Pro, and Source Code Pro. Layout is organized around three 1.9 inch
columns with a 0.3 inch gutter. Text follows a 3.6 pt baseline grid.

ISBN: 978-0-9905829-0-8

To Megan, for faith and time,
the two essential ingredients.

Game Programming Patterns v

I. Introduction 1
1. Architecture, Performance, and Games . 9

II. Design Patterns Revisited 19
2. Command . 21

3. Flyweight. .33

4. Observer .43

5. Prototype .59

6. Singleton. .73

7. State .87

III. Sequencing Patterns 105
8. Double Buffer . 107

9. Game Loop . 123

10. Update Method . 139

IV. Behavioral Patterns 153
11. Bytecode . 155

12. Subclass Sandbox . 181

13. Type Object . 193

V. Decoupling Patterns 211
14. Component . 213

15. Event Queue. . 233

16. Service Locator . 251

VI. Optimization Patterns 267
17. Data Locality . 269

18. Dirty Flag . 291

19. Object Pool . 305

20. Spatial Partition . 321

Contents

Game Programming Patterns vii

I’ve heard only other authors know what’s involved in writing a book, but
there is another tribe who know the precise weight of that burden — those
with the misfortune of being in a relationship with a writer. I wrote this
in a space of time painstakingly carved from the dense rock of life for me
by my wife Megan. Washing dishes and giving the kids baths may not be
“writing”, but without her doing those, this book wouldn’t be here.

I started this project while a programmer at Electronic Arts. I don’t think
the company knew quite what to make of it, and I’m grateful to Michael
Malone, Olivier Nallet, and Richard Wifall for supporting it and providing
detailed, insightful feedback on the first few chapters.

Halfway through writing, I decided to forgo a traditional publisher. I
knew that meant losing the guidance an editor brings, but I had email
from dozens of readers telling me where they wanted the book to go. I’d
lose proofreaders, but I had over 250 bug reports to help improve the
prose. I’d give up the incentive of a writing schedule, but with readers
patting my back when I finished each chapter, I had plenty of motivation.

They call this “self publishing”, but “crowd publishing” is closer to the
mark. Writing can be lonely work, but I was never alone. Even when I put
the book on a shelf for two years, the encouragement continued. Without
the dozens of people who didn’t let me forget that they were waiting for
more chapters, I never would have picked it back up and finished.

To everyone who emailed or commented, upvoted or favorited, tweeted
or retweeted, anyone who reached out to me, or told a friend about the
book, or sent me a bug report: my heart is filled with gratitude for you.
Completing this book was one of my biggest goals in life, and you made
it happen. Thank you!

— Bob Nystrom, September 6th, 2014

Acknowledgements

What I didn’t lose was a good copy
editor. Lauren Briese showed up just
when I needed her and did a wonderful
job.

Special thanks go to Colm Sloan who
pored over every single chapter in the
book twice and gave me mountains
of fantastic feedback, all out of the
goodness of his own heart. I owe you a
beer or twenty.

Game Programming Patterns – Introduction 1

I.Introduction

In fifth grade, my friends and I were given access to a little unused
classroom housing a couple of very beat-up TRS-80s. Hoping to inspire
us, a teacher found a printout of some simple BASIC programs for us to
tinker with.

The audio cassette drives on the computers were broken, so any time
we wanted to run some code, we’d have to carefully type it in from scratch.
This led us to prefer programs that were only a few lines long:

10 PRINT "BOBBY IS RADICAL!!!"
20 GOTO 10

Even so, the process was fraught with peril. We didn’t know how to
program, so a tiny syntax error was impenetrable to us. If the program
didn’t work, which was often, we started over from the beginning.

At the back of the stack of pages was a real monster: a program that took
up several dense pages of code. It took a while before we worked up the
courage to even try it, but it was irresistible — the title above the listing
was “Tunnels and Trolls”. We had no idea what it did, but it sounded

Maybe if the computer prints it enough
times, it will magically become true.

Chapter 1: Architecture, Performance, and Games

2 Introduction

like a game, and what could be cooler than a computer game that you
programmed yourself?

We never did get it running, and after a year, we moved out of that
classroom. (Much later when I actually knew a bit of BASIC, I realized that
it was just a character generator for the table-top game and not a game
in itself.) But the die was cast — from there on out, I wanted to be a game
programmer.

When I was in my teens, my family got a Macintosh with QuickBASIC
and later THINK C. I spent almost all of my summer vacations hacking
together games. Learning on my own was slow and painful. I’d get
something up and running easily — maybe a map screen or a little
puzzle — but as the program grew, it got harder and harder.

At first, the challenge was just getting something working. Then, it
became figuring out how to write programs bigger than what would fit in
my head. Instead of just reading about “How to Program in C++”, I started
trying to find books about how to organize programs.

Fast-forward several years, and a friend hands me a book: Design
Patterns: Elements of Reusable Object-Oriented Software. Finally! The book
I’d been looking for since I was a teenager. I read it cover to cover in one
sitting. I still struggled with my own programs, but it was such a relief to
see that other people struggled too and came up with solutions. I felt like
I finally had a couple of tools to use instead of just my bare hands.

In 2001, I landed my dream job: software engineer at Electronic Arts. I
couldn’t wait to get a look at some real games and see how the pros put
them together. What was the architecture like for an enormous game like
Madden Football? How did the different systems interact? How did they
get a single codebase to run on multiple platforms?

Cracking open the source code was a humbling and surprising
experience. There was brilliant code in graphics, AI, animation, and visual
effects. We had people who knew how to squeeze every last cycle out of
a CPU and put it to good use. Stuff I didn’t even know was possible, these
people did before lunch.

But the architecture this brilliant code hung from was often an
afterthought. They were so focused on features that organization went
overlooked. Coupling was rife between modules. New features were
often bolted onto the codebase wherever they could be made to fit. To my
disillusioned eyes, it looked like many programmers, if they ever cracked
open Design Patterns at all, never got past Singleton (p. 73).

Of course, it wasn’t really that bad. I’d imagined game programmers
sitting in some ivory tower covered in whiteboards, calmly discussing

Many of my summers were also spent
catching snakes and turtles in the
swamps of southern Louisiana. If it
wasn’t so blisteringly hot outside,
there’s a good chance this would
be a herpetology book instead of a
programming one.

This was the first time we’d met, and
five minutes after being introduced, I sat
down on his couch and spent the next
few hours completely ignoring him and
reading. I’d like to think my social skills
have improved at least a little since then.

Game Programming Patterns – Introduction 3

architectural minutiae for weeks on end. The reality was that the code I
was looking at was written by people working to meet intense deadlines.
They did the best they could, and, as I gradually realized, their best was
often very good. The more time I spent working on game code, the more
bits of brilliance I found hiding under the surface.

Unfortunately, “hiding” was often a good description. There were gems
buried in the code, but many people walked right over them. I watched
coworkers struggle to reinvent good solutions when examples of exactly
what they needed were nestled in the same codebase they were standing
on.

That problem is what this book aims to solve. I dug up and polished the
best patterns I’ve found in games, and presented them here so that we can
spend our time inventing new things instead of re-inventing them.

What’s in Store
There are already dozens of game programming books out there. Why
write another? Most game programming books I’ve seen fall into one of
two categories:

• Domain-specific books. These narrowly-focused books give you a deep
dive on some specific aspect of game development. They’ll teach you
about 3D graphics, real-time rendering, physics simulation, artificial
intelligence, or audio. These are the areas that many game programmers
specialize in as their careers progress.

• Whole-engine books. In contrast, these try to span all of the different
parts of an entire game engine. They are oriented towards building a
complete engine suited to some specific genre of game, usually a 3D
first-person shooter.

I like both of these kinds of books, but I think they leave some gaps. Books
specific to a domain rarely tell you how that chunk of code interacts with
the rest of the game. You may be a wizard at physics and rendering, but
do you know how to tie them together gracefully?

The second category covers that, but I often find whole-engine books
to be too monolithic and too genre-specific. Especially with the rise of
mobile and casual gaming, we’re in a period where lots of different genres
of games are being created. We aren’t all just cloning Quake anymore.
Books that walk you through a single engine aren’t helpful when your
game doesn’t fit that mold.

4 Introduction – How it Relates to Design Patterns

Instead, what I’m trying to do here is more à la carte. Each of the
chapters in this book is an independent idea that you can apply to your
code. This way, you can mix and match them in a way that works best for
the game you want to make.

How it Relates to Design Patterns
Any programming book with “Patterns” in its name clearly bears a
relationship to the classic Design Patterns: Elements of Reusable Object-
Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides (ominously called the “Gang of Four”).

By calling this book “Game Programming Patterns”, I’m not trying
to imply that the Gang of Four’s book is inapplicable to games. On the
contrary: the Design Patterns Revisited section of this book covers many
of the patterns from Design Patterns, but with an emphasis on how they
can be applied to game programming.

Conversely, I think this book is applicable to non-game software too. I
could just as well have called this book More Design Patterns, but I think
games make for more engaging examples. Do you really want to read yet
another book about employee records and bank accounts?

That being said, while the patterns introduced here are useful in other
software, I think they’re particularly well-suited to engineering challenges
commonly encountered in games:

• Time and sequencing are often a core part of a game’s architecture.
Things must happen in the right order and at the right time.

• Development cycles are highly compressed, and a number of
programmers need to be able to rapidly build and iterate on a rich set
of different behavior without stepping on each other’s toes or leaving
footprints all over the codebase.

• After all of this behavior is defined, it starts interacting. Monsters bite
the hero, potions are mixed together, and bombs blast enemies and
friends alike. Those interactions must happen without the codebase
turning into an intertwined hairball.

• And, finally, performance is critical in games. Game developers are in
a constant race to see who can squeeze the most out of their platform.
Tricks for shaving off cycles can mean the difference between an A-rated
game and millions of sales or dropped frames and angry reviewers.

Another example of this à la carte style is
the widely beloved Game Programming
Gems series.

Design Patterns itself was in turn inspired
by a previous book. The idea of crafting
a language of patterns to describe open-
ended solutions to problems comes
from A Pattern Language, by Christopher
Alexander (along with Sarah Ishikawa
and Murray Silverstein).

Their book was about architecture
(like real architecture with buildings
and walls and stuff), but they hoped
others would use the same structure to
describe solutions in other fields. Design
Patterns is the Gang of Four’s attempt to
do that for software.

Game Programming Patterns – Introduction 5

How to Read the Book
Game Programming Patterns is divided into three broad sections. The first
introduces and frames the book. It’s the chapter you’re reading now along
with the next one.

The second section, “Design Patterns Revisited” (p. 19), goes through
a handful of patterns from the Gang of Four book. With each chapter, I
give my spin on a pattern and how I think it relates to game programming.

The last section is the real meat of the book. It presents thirteen design
patterns that I’ve found useful. They’re grouped into four categories:
“Sequencing Patterns” (p. 105), “Behavioral Patterns” (p. 153),
“Decoupling Patterns” (p. 211), and “Optimization Patterns” (p. 267).
Each of these patterns is described using a consistent structure so that
you can use this book as a reference and quickly find what you need:

• The Intent section provides a snapshot description of the pattern in
terms of the problem it intends to solve. This is first so that you can
hunt through the book quickly to find a pattern that will help you with
your current struggle.

• The Motivation section describes an example problem that we will be
applying the pattern to. Unlike concrete algorithms, a pattern is usually
formless unless applied to some specific problem. Teaching a pattern
without an example is like teaching baking without mentioning dough.
This section provides the dough that the later sections will bake.

• The Pattern section distills the essence of the pattern out of the previous
example. If you want a dry textbook description of the pattern, this is
it. It’s also a good refresher if you’re familiar with a pattern already and
want to make sure you don’t forget an ingredient.

• So far, the pattern has only been explained in terms of a single example.
But how do you know if the pattern will be good for your problem? The
When to Use It section provides some guidelines on when the pattern
is useful and when it’s best avoided. The Keep in Mind section points
out consequences and risks when using the pattern.

• If, like me, you need concrete examples to really get something, then
Sample Code is your section. It walks step by step through a full
implementation of the pattern so you can see exactly how it works.

• Patterns differ from single algorithms because they are open-ended.
Each time you use a pattern, you’ll likely implement it differently. The

6 Introduction – About the Sample Code

next section, Design Decisions, explores that space and shows you
different options to consider when applying a pattern.

• To wrap it up, there’s a short See Also section that shows how this
pattern relates to others and points you to real-world open source code
that uses it.

About the Sample Code
Code samples in this book are in C++, but that isn’t to imply that these
patterns are only useful in that language or that C++ is a better language
for them than others. Almost any language will work fine, though some
patterns do tend to presume your language has objects and classes.

I chose C++ for a couple of reasons. First, it’s the most popular language
for commercially shipped games. It is the lingua franca of the industry.
Moreso, the C syntax that C++ is based on is also the basis for Java, C#,
JavaScript, and many other languages. Even if you don’t know C++, the
odds are good you can understand the code samples here with a little bit
of effort.

The goal of this book is not to teach you C++. The samples are kept as
simple as possible and don’t represent good C++ style or usage. Read the
code samples for the idea being expressed, not the code expressing it.

In particular, the code is not written in “modern” — C++11 or newer — style.
It does not use the standard library and rarely uses templates. This makes
for “bad” C++ code, but I hope that by keeping it stripped down, it will be
more approachable to people coming from C, Objective-C, Java, and other
languages.

To avoid wasting space on code you’ve already seen or that isn’t relevant
to the pattern, code will sometimes be omitted in examples. When this
occurs, an ellipsis will be placed in the sample to show where the missing
code goes.

Consider a function that will do some work and then return a value. The
pattern being explained is only concerned with the return value, and not
the work being done. In that case, the sample code will look like:

bool update()
{
 // Do work...
 return isDone();
}

Game Programming Patterns – Introduction 7

Where to Go From Here
Patterns are a constantly changing and expanding part of software
development. This book continues the process started by the Gang of
Four of documenting and sharing the software patterns they saw, and that
process will continue after the ink dries on these pages.

You are a core part of that process. As you develop your own patterns
and refine (or refute!) the patterns in this book, you contribute to the
software community. If you have suggestions, corrections, or other
feedback about what’s in here, please get in touch!

Game Programming Patterns – Introduction 9

Before we plunge headfirst into a pile of patterns, I thought it might help
to give you some context about how I think about software architecture
and how it applies to games. It may help you understand the rest of this
book better. If nothing else, when you get dragged into an argument about
how terrible (or awesome) design patterns and software architecture are,
it will give you some ammo to use.

What is Software Architecture?
If you read this book cover to cover, you won’t come away knowing the
linear algebra behind 3D graphics or the calculus behind game physics. It
won’t show you how to alpha-beta prune your AI’s search tree or simulate
a room’s reverberation in your audio playback.

Instead, this book is about the code between all of that. It’s less about
writing code than it is about organizing it. Every program has some
organization, even if it’s just “jam the whole thing into main() and see
what happens”, so I think it’s more interesting to talk about what makes
for good organization. How do we tell a good architecture from a bad one?

1

Architecture,
Performance,
and Games

Note that I didn’t presume which side
you’re taking in that fight. Like any
arms dealer, I have wares for sale to all
combatants.

Wow, this paragraph would make a
terrible ad for the book.

10 Architecture, Performance, and Games – What is Software Architecture?

I’ve been mulling over this question for about five years. Of course, like
you, I have an intuition about good design. We’ve all suffered through
codebases so bad, the best you could hope to do for them is take them out
back and put them out of their misery.

A lucky few have had the opposite experience, a chance to work with
beautifully designed code. The kind of codebase that feels like a perfectly
appointed luxury hotel festooned with concierges waiting eagerly on
your every whim. What’s the difference between the two?

What is good software architecture?
For me, good design means that when I make a change, it’s as if the entire
program was crafted in anticipation of it. I can solve a task with just a few
choice function calls that slot in perfectly, leaving not the slightest ripple
on the placid surface of the code.

That sounds pretty, but it’s not exactly actionable. “Just write your code
so that changes don’t disturb its placid surface.” Right.

Let me break that down a bit. The first key piece is that architecture
is about change. Someone has to be modifying the codebase. If no one
is touching the code — whether because it’s perfect and complete or so
wretched no one will sully their text editor with it — its design is irrelevant.
The measure of a design is how easily it accommodates changes. With no
changes, it’s a runner who never leaves the starting line.

How do you make a change?
Before you can change the code to add a new feature, to fix a bug, or
for whatever reason caused you to fire up your editor, you have to
understand what the existing code is doing. You don’t have to know the
whole program, of course, but you need to load all of the relevant pieces
of it into your primate brain.

We tend to gloss over this step, but it’s often the most time-consuming
part of programming. If you think paging some data from disk into RAM
is slow, try paging it into a simian cerebrum over a pair of optical nerves.

Once you’ve got all the right context into your wetware, you think for
a bit and figure out your solution. There can be a lot of back and forth
here, but often this is relatively straightforward. Once you understand
the problem and the parts of the code it touches, the actual coding is
sometimes trivial.

You beat your meaty fingers on the keyboard for a while until the
right colored lights blink on screen and you’re done, right? Not just yet!

It’s weird to think that this is literally an
OCR process.

Let’s admit it, most of us are responsible
for a few of those.

Game Programming Patterns – Introduction 11

Before you write tests and send it off for code review, you often have some
cleanup to do.

You jammed a bit more code into your game, but you don’t want the
next person to come along to trip over the wrinkles you left throughout the
source. Unless the change is minor, there’s usually a bit of reorganization
to do to make your new code integrate seamlessly with the rest of the
program. If you do it right, the next person to come along won’t be able to
tell when any line of code was written.

In short, the flow chart for programming is something like:

Figure 1.1 – Your workday in a nutshell

How can decoupling help?
While it isn’t obvious, I think much of software architecture is about that
learning phase. Loading code into neurons is so painfully slow that it
pays to find strategies to reduce the volume of it. This book has an entire
section on decoupling patterns, and a large chunk of Design Patterns is
about the same idea.

You can define “decoupling” a bunch of ways, but I think if two
pieces of code are coupled, it means you can’t understand one without
understanding the other. If you de-couple them, you can reason about
either side independently. That’s great because if only one of those pieces
is relevant to your problem, you just need to load it into your monkey
brain and not the other half too.

To me, this is a key goal of software architecture: minimize the amount
of knowledge you need to have in-cranium before you can make
progress.

The later stages come into play too, of course. Another definition of
decoupling is that a change to one piece of code doesn’t necessitate a
change to another. We obviously need to change something, but the less

The fact that there is no escape from
that loop is a little alarming now that I
think about it.

Did I say “tests”? Oh, yes, I did. It’s hard
to write unit tests for some game code,
but a large fraction of the codebase is
perfectly testable.

I won’t get on a soapbox here, but
I’ll ask you to consider doing more
automated testing if you aren’t already.
Don’t you have better things to do than
manually validate stuff over and over
again?

12 Architecture, Performance, and Games – At What Cost?

coupling we have, the less that change ripples throughout the rest of the
game.

At What Cost?
This sounds great, right? Decouple everything and you’ll be able to code
like the wind. Each change will mean touching only one or two select
methods, and you can dance across the surface of the codebase leaving
nary a shadow.

This feeling is exactly why people get excited about abstraction,
modularity, design patterns, and software architecture. A well-architected
program really is a joyful experience to work in, and everyone loves
being more productive. Good architecture makes a huge difference in
productivity. It’s hard to overstate how profound an effect it can have.

But, like all things in life, it doesn’t come free. Good architecture takes
real effort and discipline. Every time you make a change or implement a
feature, you have to work hard to integrate it gracefully into the rest of the
program. You have to take great care to both organize the code well and
keep it organized throughout the thousands of little changes that make up
a development cycle.

You have to think about which parts of the program should be
decoupled and introduce abstractions at those points. Likewise, you
have to determine where extensibility should be engineered in so future
changes are easier to make.

People get really excited about this. They envision future developers
(or just their future self) stepping into the codebase and finding it open-
ended, powerful, and just beckoning to be extended. They imagine The
One Game Engine To Rule Them All.

But this is where it starts to get tricky. Whenever you add a layer of
abstraction or a place where extensibility is supported, you’re speculating
that you will need that flexibility later. You’re adding code and complexity
to your game that takes time to develop, debug, and maintain.

That effort pays off if you guess right and end up touching that code
later. But predicting the future is hard, and when that modularity doesn’t
end up being helpful, it quickly becomes actively harmful. After all, it is
more code you have to deal with.

When people get overzealous about this, you get a codebase whose
architecture has spiraled out of control. You’ve got interfaces and
abstractions everywhere. Plug-in systems, abstract base classes, virtual
methods galore, and all sorts of extension points.

The second half of this — maintaining
your design — deserves special attention.
I’ve seen many programs start out
beautifully and then die a death of a
thousand cuts as programmers add “just
one tiny little hack” over and over again.

Like gardening, it’s not enough to put
in new plants. You must also weed and
prune.

Some folks coined the term
“YAGNI” — You aren’t gonna need it — as
a mantra to use to fight this urge to
speculate about what your future self
may want.

Game Programming Patterns – Introduction 13

It takes you forever to trace through all of that scaffolding to find some
real code that does something. When you need to make a change, sure,
there’s probably an interface there to help, but good luck finding it. In
theory, all of this decoupling means you have less code to understand
before you can extend it, but the layers of abstraction themselves end up
filling your mental scratch disk.

Codebases like this are what turn people against software architecture,
and design patterns in particular. It’s easy to get so wrapped up in the
code itself that you lose sight of the fact that you’re trying to ship a game.
The siren song of extensibility sucks in countless developers who spend
years working on an “engine” without ever figuring out what it’s an engine
for.

Performance and Speed
There’s another critique of software architecture and abstraction that you
hear sometimes, especially in game development: that it hurts your game’s
performance. Many patterns that make your code more flexible rely on
virtual dispatch, interfaces, pointers, messages, and other mechanisms
that all have at least some runtime cost.

There’s a reason for this. A lot of software architecture is about making
your program more flexible. It’s about making it take less effort to change
it. That means encoding fewer assumptions in the program. You use
interfaces so that your code works with any class that implements it
instead of just the one that does today. You use observers (p. 43) and
messaging (p. 233) to let two parts of the game talk to each other so that
tomorrow, it can easily be three or four.

But performance is all about assumptions. The practice of optimization
thrives on concrete limitations. Can we safely assume we’ll never have
more than 256 enemies? Great, we can pack an ID into a single byte. Will
we only call a method on one concrete type here? Good, we can statically
dispatch or inline it. Are all of the entities going to be the same class?
Great, we can make a nice contiguous array (p. 269) of them.

This doesn’t mean flexibility is bad, though! It lets us change our game
quickly, and development speed is absolutely vital for getting to a fun
experience. No one, not even Will Wright, can come up with a balanced
game design on paper. It demands iteration and experimentation.

The faster you can try out ideas and see how they feel, the more you can
try and the more likely you are to find something great. Even after you’ve

One interesting counter-example
is templates in C++. Template
metaprogramming can sometimes give
you the abstraction of interfaces without
any penalty at runtime.

There’s a spectrum of flexibility here.
When you write code to call a concrete
method in some class, you’re fixing that
class at author time — you’ve hard-coded
which class you call into. When you go
through a virtual method or interface,
the class that gets called isn’t known
until runtime. That’s much more flexible
but implies some runtime overhead.

Template metaprogramming is
somewhere between the two. There, you
make the decision of which class to call
at compile time when the template is
instantiated.

14 Architecture, Performance, and Games – The Good in Bad Code

found the right mechanics, you need plenty of time for tuning. A tiny
imbalance can wreck the fun of a game.

There’s no easy answer here. Making your program more flexible so
you can prototype faster will have some performance cost. Likewise,
optimizing your code will make it less flexible.

My experience, though, is that it’s easier to make a fun game fast than
it is to make a fast game fun. One compromise is to keep the code flexible
until the design settles down and then tear out some of the abstraction
later to improve your performance.

The Good in Bad Code
That brings me to the next point which is that there’s a time and place for
different styles of coding. Much of this book is about making maintainable,
clean code, so my allegiance is pretty clearly to doing things the “right”
way, but there’s value in slapdash code too.

Writing well-architected code takes careful thought, and that translates
to time. Moreso, maintaining a good architecture over the life of a project
takes a lot of effort. You have to treat your codebase like a good camper
does their campsite: always try to leave it a little better than you found it.

This is good when you’re going to be living in and working on that code
for a long time. But, like I mentioned earlier, game design requires a lot
of experimentation and exploration. Especially early on, it’s common to
write code that you know you’ll throw away.

If you just want to find out if some gameplay idea plays right at all,
architecting it beautifully means burning more time before you actually
get it on screen and get some feedback. If it ends up not working, that
time spent making the code elegant goes to waste when you delete it.

Prototyping — slapping together code that’s just barely functional
enough to answer a design question — is a perfectly legitimate
programming practice. There is a very large caveat, though. If you write
throwaway code, you must ensure you’re able to throw it away. I’ve seen
bad managers play this game time and time again:

Game Programming Patterns – Introduction 15

Boss: “Hey, we’ve got this idea that we want to try out. Just a prototype,
so don’t feel you need to do it right. How quickly can you slap
something together?”

Dev: “Well, if I cut lots of corners, don’t test it, don’t document it, and
it has tons of bugs, I can give you some temp code in a few days.”

Boss: “Great!”

A few days pass…

Boss: “Hey, that prototype is great. Can you just spend a few hours
cleaning it up a bit now and we’ll call it the real thing?”

You need to make sure the people using the throwaway code understand
that even though it kind of looks like it works, it cannot be maintained
and must be rewritten. If there’s a chance you’ll end up having to keep it
around, you may have to defensively write it well.

Striking a Balance
We have a few forces in play:

• We want nice architecture so the code is easier to understand over the
lifetime of the project.

• We want fast runtime performance.

• We want to get today’s features done quickly.

These goals are at least partially in opposition. Good architecture improves
productivity over the long term, but maintaining it means every change
requires a little more effort to keep things clean.

The implementation that’s quickest to write is rarely the quickest to run.
Instead, optimization takes significant engineering time. Once it’s done,
it tends to calcify the codebase: highly optimized code is inflexible and
very difficult to change.

There’s always pressure to get today’s work done today and worry about
everything else tomorrow. But if we cram in features as quickly as we can,
our codebase will become a mess of hacks, bugs, and inconsistencies that
saps our future productivity.

There’s no simple answer here, just trade-offs. From the email I get, this
disheartens a lot of people. Especially for novices who just want to make

One trick to ensuring your prototype
code isn’t obliged to become real code
is to write it in a language different from
the one your game uses. That way, you
have to rewrite it before it can end up in
your actual game.

I think it’s interesting that these are all
about some kind of speed: our long-
term development speed, the game’s
execution speed, and our short-term
development speed.

16 Architecture, Performance, and Games – Simplicity

a game, it’s intimidating to hear, “There is no right answer, just different
flavors of wrong.”

But, to me, this is exciting! Look at any field that people dedicate careers
to mastering, and in the center you will always find a set of intertwined
constraints. After all, if there was an easy answer, everyone would just do
that. A field you can master in a week is ultimately boring. You don’t hear
of someone’s distinguished career in ditch digging.

To me, this has much in common with games themselves. A game like
chess can never be mastered because all of the pieces are so perfectly
balanced against one another. This means you can spend your life
exploring the vast space of viable strategies. A poorly designed game
collapses to the one winning tactic played over and over until you get
bored and quit.

Simplicity
Lately, I feel like if there is any method that eases these constraints, it’s
simplicity. In my code today, I try very hard to write the cleanest, most
direct solution to the problem. The kind of code where after you read it,
you understand exactly what it does and can’t imagine any other possible
solution.

I aim to get the data structures and algorithms right (in about that
order) and then go from there. I find if I can keep things simple, there’s
less code overall. That means less code to load into my head in order to
change it. It often runs fast because there’s simply not as much overhead
and not much code to execute. (This certainly isn’t always the case though.
You can pack a lot of looping and recursion in a tiny amount of code.)

However, note that I’m not saying simple code takes less time to write.
You’d think it would since you end up with less total code, but a good
solution isn’t an accretion of code, it’s a distillation of it.

We’re rarely presented with an elegant problem. Instead, it’s a pile of
use cases. You want the X to do Y when Z, but W when A, and so on. In
other words, a long list of different example behaviors. The solution that
takes the least mental effort is to just code up those use cases one at a
time. If you look at novice programmers, that’s what they often do: they
churn out reams of conditional logic for each case that popped into their
head.

But there’s nothing elegant in that, and code in that style tends to fall
over when presented with input even slightly different than the examples
the coder considered. When we think of elegant solutions, what we often

Blaise Pascal famously ended a letter
with, “I would have written a shorter
letter, but I did not have the time.”

Another choice quote comes from
Antoine de Saint-Exupery: “Perfection
is achieved, not when there is nothing
more to add, but when there is nothing
left to take away.”

Closer to home, I’ll note that every
time I revise a chapter in this book,
it gets shorter. Some chapters are
tightened by 20% by the time they’re
done.

Maybe you do; I didn’t research that
analogy. For all I know, there could
be avid ditch digging hobbyists, ditch
digging conventions, and a whole
subculture around it. Who am I to judge?

Game Programming Patterns – Introduction 17

Trust me, two months before shipping
is not when you want to start worrying
about that nagging little “game only runs
at 1 FPS” problem.

have in mind is a general one: a small bit of logic that still correctly covers
a large space of use cases.

Finding that is a bit like pattern matching or solving a puzzle. It takes
effort to see through the scattering of example use cases to find the hidden
order underlying them all. It’s a great feeling when you pull it off.

Get On With It, Already
Almost everyone skips the introductory chapters, so I congratulate you
on making it this far. I don’t have much in return for your patience, but I’ll
offer up a few bits of advice that I hope may be useful to you:

• Abstraction and decoupling make evolving your program faster and
easier, but don’t waste time doing them unless you’re confident the
code in question needs that flexibility.

• Think about and design for performance throughout your development
cycle, but put off the low-level, nitty-gritty optimizations that lock
assumptions into your code until as late as possible.

• Move quickly to explore your game’s design space, but don’t go so fast
that you leave a mess behind you. You’ll have to live with it, after all.

• If you are going to ditch code, don’t waste time making it pretty. Rock
stars trash hotel rooms because they know they’re going to check out
the next day.

• But, most of all, if you want to make something fun, have fun making
it.

II.
Design Patterns
Revisited

Design Patterns: Elements of Reusable Object-Oriented Software is nearly
twenty years old by my watch. Unless you’re looking over my shoulder,
there’s a good chance Design Patterns will be old enough to drink by the
time you read this. For an industry as quickly moving as software, that’s
practically ancient. The enduring popularity of the book says something
about how timeless design is compared to many frameworks and
methodologies.

While I think Design Patterns is still relevant, we’ve learned a lot in the
past couple of decades. In this section, we’ll walk through a handful of the
original patterns the Gang of Four documented. For each pattern, I hope
to have something useful or interesting to say.

I think some patterns are overused (Singleton (p. 73)), while
others are underappreciated (Command (p. 21)). A couple are here
because I want to explore their relevance to games (Flyweight (p. 33)
and Observer (p. 43)). Finally, sometimes I just think it’s fun to
see how patterns are enmeshed in the larger field of programming
(Prototype (p. 59) and State (p. 87)).

Chapter 2: Command
Chapter 3: Flyweight
Chapter 4: Observer
Chapter 5: Prototype
Chapter 6: Singleton
Chapter 7: State

I.

Game Programming Patterns – Design Patterns Revisited 21

Command is one of my favorite patterns. Most large programs I write,
games or otherwise, end up using it somewhere. When I’ve used it in the
right place, it’s neatly untangled some really gnarly code. For such a swell
pattern, the Gang of Four has a predictably abstruse description. Look at
it up there.

I think we can all agree that that’s a terrible sentence. First of all,
it mangles whatever metaphor it’s trying to establish. Outside of the
weird world of software where words can mean anything, a “client” is a
person — someone you do business with. Last I checked, human beings
can’t be “parameterized”.

Then, the rest of that sentence is just a list of stuff you could maybe
possibly use the pattern for. Not very illuminating unless your use case
happens to be in that list. My pithy tagline for the Command pattern is:

A command is a reified method call.

Of course, “pithy” often means “impenetrably terse”, so this may not be
much of an improvement. Let me unpack that a bit. “Reify”, in case you’ve

“Encapsulate a request as an object, thereby letting users
parameterize clients with different requests, queue or log
requests, and support undoable operations.”

2Command

“Reify” comes from the Latin “res”, for
“thing”, with the English suffix “–fy”.
So it basically means “thingify”, which,
honestly, would be a more fun word to
use.

22 Command – Configuring Input

never heard it, means “make real”. Another term for reifying is making
something “first-class”.

Both terms mean taking some concept and turning it into a piece of
data — an object — that you can stick in a variable, pass to a function, etc.
So by saying the Command pattern is a “reified method call”, what I mean
is that it’s a method call wrapped in an object.

That sounds a lot like a “callback”, “first-class function”, “function
pointer”, “closure”, or “partially applied function” depending on which
language you’re coming from, and indeed those are all in the same
ballpark. The Gang of Four later says: “Commands are an object-oriented
replacement for callbacks.”

That would be a better slugline for the pattern than the one they
chose. But all of this is abstract and nebulous. I like to start chapters with
something concrete, and I blew that. To make up for it, from here on out
it’s all examples where commands are a brilliant fit.

Configuring Input
Somewhere in every game is a chunk of code that reads in raw user input
— button presses, keyboard events, mouse clicks, whatever. It takes each
input and translates it to a meaningful action in the game:

Figure 2.1 – Buttons mapped to game actions

A dead simple implementation looks like:

void InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) jump();
 else if (isPressed(BUTTON_Y)) fireGun();
 else if (isPressed(BUTTON_A)) swapWeapon();
 else if (isPressed(BUTTON_B)) lurchIneffectively();
}

Reflection systems in some languages let
you work with the types in your program
imperatively at runtime. You can get an
object that represents the class of some
other object, and you can play with that
to see what the type can do. In other
words, reflection is a reified type system.

Pro tip: Don’t press B very often.

Game Programming Patterns – Design Patterns Revisited 23

This function typically gets called once per frame by the game
loop (p. 123), and I’m sure you can figure out what it does. This code
works if we’re willing to hard-wire user inputs to game actions, but many
games let the user configure how their buttons are mapped.

To support that, we need to turn those direct calls to jump() and
fireGun() into something that we can swap out. “Swapping out” sounds
a lot like assigning a variable, so we need an object that we can use to
represent a game action. Enter: the Command pattern.

We define a base class that represents a triggerable game command:

class Command
{
public:
 virtual ~Command() {}
 virtual void execute() = 0;
};

Then we create subclasses for each of the different game actions:

class JumpCommand : public Command
{
public:
 virtual void execute() { jump(); }
};

class FireCommand : public Command
{
public:
 virtual void execute() { fireGun(); }
};

// You get the idea...

In our input handler, we store a pointer to a command for each button:

class InputHandler
{
public:
 void handleInput();

 // Methods to bind commands...

private:
 Command* buttonX_;
 Command* buttonY_;
 Command* buttonA_;
 Command* buttonB_;
};

Now the input handling just delegates to those:

When you have an interface with a single
method that doesn’t return anything,
there’s a good chance it’s the Command
pattern.

24 Command – Directions for Actors

void InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) buttonX_->execute();
 else if (isPressed(BUTTON_Y)) buttonY_->execute();
 else if (isPressed(BUTTON_A)) buttonA_->execute();
 else if (isPressed(BUTTON_B)) buttonB_->execute();
}

Where each input used to directly call a function, now there’s a layer of
indirection.

Figure 2.2 – Buttons mapped to assignable commands

This is the Command pattern in a nutshell. If you can see the merit of it
already, consider the rest of this chapter a bonus.

Directions for Actors
The command classes we just defined work for the previous example, but
they’re pretty limited. The problem is that they assume there are these
top-level jump(), fireGun(), etc. functions that implicitly know how to
find the player’s avatar and make him dance like the puppet he is.

That assumed coupling limits the usefulness of those commands. The
only thing the JumpCommand can make jump is the player. Let’s loosen
that restriction. Instead of calling functions that find the commanded
object themselves, we’ll pass in the object that we want to order around:

class Command
{
public:
 virtual ~Command() {}
 virtual void execute(GameActor& actor) = 0;
};

Here, GameActor is our “game object” class that represents a character in
the game world. We pass it in to execute() so that the derived command
can invoke methods on an actor of our choice, like so:

Notice how we don’t check for NULL
here? This assumes each button will
have some command wired up to it.

If we want to support buttons that
do nothing without having to explicitly
check for NULL, we can define a
command class whose execute()
method does nothing. Then, instead of
setting a button handler to NULL, we
point it to that object. This is a pattern
called “Null Object.”

Game Programming Patterns – Design Patterns Revisited 25

class JumpCommand : public Command
{
public:
 virtual void execute(GameActor& actor)
 {
 actor.jump();
 }
};

Now, we can use this one class to make any character in the game hop
around. We’re just missing a piece between the input handler and the
command that takes the command and invokes it on the right object.
First, we change handleInput() so that it returns commands:

Command* InputHandler::handleInput()
{
 if (isPressed(BUTTON_X)) return buttonX_;
 if (isPressed(BUTTON_Y)) return buttonY_;
 if (isPressed(BUTTON_A)) return buttonA_;
 if (isPressed(BUTTON_B)) return buttonB_;

 // Nothing pressed, so do nothing.
 return NULL;
}

It can’t execute the command immediately since it doesn’t know what
actor to pass in. Here’s where we take advantage of the fact that the
command is a reified call — we can delay when the call is executed.

Then, we need some code that takes that command and runs it on the
actor representing the player. Something like:

Command* command = inputHandler.handleInput();
if (command)
{
 command->execute(actor);
}

Assuming actor is a reference to the player’s character, this correctly
drives him based on the user’s input, so we’re back to the same behavior
we had in the first example. But adding a layer of indirection between the
command and the actor that performs it has given us a neat little ability:
we can let the player control any actor in the game now by changing the actor
we execute the commands on.

In practice, that’s not a common feature, but there is a similar use case
that does pop up frequently. So far, we’ve only considered the player-driven
character, but what about all of the other actors in the world? Those are
driven by the game’s AI. We can use this same command pattern as the

26 Command – Undo and Redo

interface between the AI engine and the actors; the AI code simply emits
Command objects.

The decoupling here between the AI that selects commands and the
actor code that performs them gives us a lot of flexibility. We can use
different AI modules for different actors. Or we can mix and match AI
for different kinds of behavior. Want a more aggressive opponent? Just
plug-in a more aggressive AI to generate commands for it. In fact, we can
even bolt AI onto the player’s character, which can be useful for things like
demo mode where the game needs to run on auto-pilot.

By making the commands that control an actor first-class objects, we’ve
removed the tight coupling of a direct method call. Instead, think of it as
a queue or stream of commands:

Figure 2.3 – A poorly drawn analogy

Some code (the input handler or AI) produces commands and places
them in the stream. Other code (the dispatcher or actor itself) consumes
commands and invokes them. By sticking that queue in the middle, we’ve
decoupled the producer on one end from the consumer on the other.

Undo and Redo
The final example is the most well-known use of this pattern. If a command
object can do things, it’s a small step for it to be able to undo them. Undo
is used in some strategy games where you can roll back moves that you
didn’t like. It’s de rigueur in tools that people use to create games. The
surest way to make your game designers hate you is giving them a level
editor that can’t undo their fat-fingered mistakes.

Without the Command pattern, implementing undo is surprisingly
hard. With it, it’s a piece of cake. Let’s say we’re making a single-player,
turn-based game and we want to let users undo moves so they can focus
more on strategy and less on guesswork.

We’re conveniently already using commands to abstract input handling,
so every move the player makes is already encapsulated in them. For
example, moving a unit may look like:

Why did I feel the need to draw a picture
of a “stream” for you? And why does it
look like a tube?

If we take those commands and make
them serializable, we can send the
stream of them over the network. We can
take the player’s input, push it over the
network to another machine, and then
replay it. That’s one important piece of
making a networked multi-player game.

For lots more on what queueing can do
for you, see Event Queue (p. 233).

I may be speaking from experience here.

Game Programming Patterns – Design Patterns Revisited 27

class MoveUnitCommand : public Command
{
public:
 MoveUnitCommand(Unit* unit, int x, int y)
 : unit_(unit),
 x_(x),
 y_(y)
 {}

 virtual void execute()
 {
 unit_->moveTo(x_, y_);
 }

private:
 Unit* unit_;
 int x_;
 int y_;
};

Note this is a little different from our previous commands. In the last
example, we wanted to abstract the command from the actor that it
modified. In this case, we specifically want to bind it to the unit being
moved. An instance of this command isn’t a general “move something”
operation that you could use in a bunch of contexts; it’s a specific concrete
move in the game’s sequence of turns.

This highlights a variation in how the Command pattern gets
implemented. In some cases, like our first couple of examples, a
command is a reusable object that represents a thing that can be done. Our
earlier input handler held on to a single command object and called its
execute() method anytime the right button was pressed.

Here, the commands are more specific. They represent a thing that can
be done at a specific point in time. This means that the input handling
code will be creating an instance of this every time the player chooses a
move. Something like:

Of course, in a non-garbage-collected
language like C++, this means the
code executing commands will also be
responsible for freeing their memory.

28 Command – Undo and Redo

Command* handleInput()
{
 Unit* unit = getSelectedUnit();

 if (isPressed(BUTTON_UP)) {
 // Move the unit up one.
 int destY = unit->y() - 1;
 return new MoveUnitCommand(
 unit, unit->x(), destY);
 }

 if (isPressed(BUTTON_DOWN)) {
 // Move the unit down one.
 int destY = unit->y() + 1;
 return new MoveUnitCommand(
 unit, unit->x(), destY);
 }

 // Other moves...

 return NULL;
}

The fact that commands are one-use-only will come to our advantage in a
second. To make commands undoable, we define another operation each
command class needs to implement:

class Command
{
public:
 virtual ~Command() {}
 virtual void execute() = 0;
 virtual void undo() = 0;
};

An undo() method reverses the game state changed by the corresponding
execute() method. Here’s our previous move command with undo
support:

Game Programming Patterns – Design Patterns Revisited 29

class MoveUnitCommand : public Command
{
public:
 MoveUnitCommand(Unit* unit, int x, int y)
 : unit_(unit), x_(x), y_(y)
 xBefore_(0), yBefore_(0),
 {}

 virtual void execute()
 {
 // Remember the unit's position before the move
 // so we can restore it.
 xBefore_ = unit_->x();
 yBefore_ = unit_->y();
 unit_->moveTo(x_, y_);
 }

 virtual void undo()
 {
 unit_->moveTo(xBefore_, yBefore_);
 }

private:
 Unit* unit_;
 int x_, y_;
 int xBefore_, yBefore_;
};

Note that we added some more state to the class. When a unit moves, it
forgets where it used to be. If we want to be able to undo that move, we
have to remember the unit’s previous position ourselves, which is what
xBefore_ and yBefore_ do.

To let the player undo a move, we keep around the last command they
executed. When they bang on Control-Z, we call that command’s undo()
method. (If they’ve already undone, then it becomes “redo” and we execute
the command again.)

Supporting multiple levels of undo isn’t much harder. Instead of
remembering the last command, we keep a list of commands and a
reference to the “current” one. When the player executes a command, we
append it to the list and point “current” at it.

Figure 2.4 – Traversing the undo stack

This seems like a place for the Memento
pattern, but I haven’t found it to work
well. Since commands tend to modify
only a small part of an object’s state,
snapshotting the rest of its data is
a waste of memory. It’s cheaper to
manually store only the bits you change.

Persistent data structures are another
option. With these, every modification
to an object returns a new one, leaving
the original unchanged. Through clever
implementation, these new objects
share data with the previous ones, so it’s
much cheaper than cloning the entire
object.

Using a persistent data structure,
each command stores a reference
to the object before the command
was performed, and undo just means
switching back to the old object.

30 Command – Classy and Dysfunctional?

When the player chooses “Undo”, we undo the current command and
move the current pointer back. When they choose “Redo”, we advance the
pointer and then execute that command. If they choose a new command
after undoing some, everything in the list after the current command is
discarded.

The first time I implemented this in a level editor, I felt like a genius.
I was astonished at how straightforward it was and how well it worked.
It takes discipline to make sure every data modification goes through a
command, but once you do that, the rest is easy.

Classy and Dysfunctional?
Earlier, I said commands are similar to first-class functions or closures,
but every example I showed here used class definitions. If you’re familiar
with functional programming, you’re probably wondering where the
functions are.

I wrote the examples this way because C++ has pretty limited support
for first-class functions. Function pointers are stateless, functors are weird
and still require defining a class, and the lambdas in C++11 are tricky to
work with because of manual memory management.

That’s not to say you shouldn’t use functions for the Command pattern
in other languages. If you have the luxury of a language with real closures,
by all means, use them! In some ways, the Command pattern is a way of
emulating closures in languages that don’t have them.

For example, if we were building a game in JavaScript, we could create
a move unit command just like this:

function makeMoveUnitCommand(unit, x, y) {
 // This function here is the command object:
 return function() {
 unit.moveTo(x, y);
 }
}

We could add support for undo as well using a pair of closures:

Redo may not be common in games, but
re-play is. A naïve implementation would
record the entire game state at each
frame so it can be replayed, but that
would use too much memory.

Instead, many games record the set of
commands every entity performed each
frame. To replay the game, the engine
just runs the normal game simulation,
executing the pre-recorded commands.

I say some ways here because
building actual classes or structures
for commands is still useful even in
languages that have closures. If your
command has multiple operations (like
undoable commands), mapping that to a
single function is awkward.

Defining an actual class with fields
also helps readers easily tell what data
the command contains. Closures are a
wonderfully terse way of automatically
wrapping up some state, but they can be
so automatic that it’s hard to see what
state they’re actually holding.

Game Programming Patterns – Design Patterns Revisited 31

function makeMoveUnitCommand(unit, x, y) {
 var xBefore, yBefore;
 return {
 execute: function() {
 xBefore = unit.x();
 yBefore = unit.y();
 unit.moveTo(x, y);
 },
 undo: function() {
 unit.moveTo(xBefore, yBefore);
 }
 };
}

If you’re comfortable with a functional style, this way of doing things
is natural. If you aren’t, I hope this chapter helped you along the way a
bit. For me, the usefulness of the Command pattern really shows how
effective the functional paradigm is for many problems.

See Also
• You may end up with a lot of different command classes. In order to

make it easier to implement those, it’s often helpful to define a concrete
base class with a bunch of convenient high-level methods that the
derived commands can compose to define their behavior. That turns
the command’s main execute() method into the Subclass Sandbox
pattern (p. 181).

• In our examples, we explicitly chose which actor would handle a
command. In some cases, especially where your object model is
hierarchical, it may not be so cut-and-dried. An object may respond to a
command, or it may decide to pawn it off on some subordinate object.
If you do that, you’ve got yourself the Chain of Responsibility pattern.

• Some commands are stateless chunks of pure behavior like the
JumpCommand in the first example. In cases like that, having more
than one instance of that class wastes memory since all instances are
equivalent. The Flyweight pattern (p. 33) addresses that.

You could make it a singleton (p. 73)
too, but friends don’t let friends create
singletons.

